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Abstract-’2The Mars Exploration Rovers, Spirit and 
Opportunity, have spent several successful months on Mars, 
returning gigabytes of images and spectral data to scientists 
on Earth. One of the instruments on the MER rovers, the 
Athena Microscopic Imager (MI), is a fixed focus, 
megapixel camera providing a k3mm depth of field and a 
3lx31mm field of view at a working distance of 63 mm 
from the lens to the object being imaged. In order to 
maximize the science return from this instrument, we 
developed the Ames MI Toollut and supported its use 
during the primary mission. The MI Toolkit is a set of 
programs that operate on collections of MI images, with the 
goal of makmg the data more understandable to the 
scieiliistb vn the ground. Because of the limited depth of 
field of the camera, and the often highly variable 
topography of the terrain being imaged, MI images of a 
given rock are often taken as a stack, with the Instrument 
Deployment Device (IDD) moving along a computed 
normal vector, pausing every few millimeters for the MI to 
acquire an image. The MI Toolkit provides image 
registration and focal section merging, which combine these 
images to form a single, maximally in-focus image, while 
compensating for changes in lighting as well as parallax due 
to the motion of the camera. The MI Toolkit also provides a 
3-D reconstruction of the surface being imaged using stereo 
and can embed 2-D MI images as texture maps into 3-D 
meshes produced by other imagers on board the rover to 
provide context. The 2-D images and 3-D meshes output 
from the Toollut are easily viewed by scientists using other 
mission tools, such as Viz or the MI Browser. 

This paper describes the MI Toolkit in detail, as well as our 
experience using it with scientists at JPL during the primary 
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1. INTRODUCTION 

The two Mars Exploration Rovers, Sprit and Opportunity, 
have been operating successfully on Mars for several 
months, returning gigabytes of data that have enabled 
scientists to learn a great deal about the history of the 
surface of the planet. The two rovers carry an identical 
payload of scientific instruments (the Athena science 
payload), which includes several fixed-focus cameras, 
spectrometers, and a rock abrasion tool (RAT). The rovers 
each have a five degree-of-freedom arm, called the 
instrument deployment device (IDD), at the end of which 
several of the instruments are mounted, including the 
microscopic imager (MI) [7]. The MI has a 20mm focal 
length lens at VIS, providing a +/- 3mm depth-of-field, and 
can view an area of approximately 31mm square at the 
workmg distance of 63 mm from the lens to the target 
object. MI images have a resolution of 1024x1024 pixels, 
giving a resolution of approximately 3 microns per pixel. 

The MI functions analogously to a geologist’s hand lens, 
allowing scientists on Earth to examine the coarse 
crystalline structures of the surfaces of rocks, as well as 
properties revealed after abrasion by the RAT. The MI is 
also used as a diagnostic tool, to examine the magnets of the 
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rovers’ Mossbauer spectrometer. 

The MI is often used to image areas larger than its working 
field of view, and objects that have more than 3mm of 
relief; in these cases the IDD is moved sound while the MI 
takes pictures, returning either a mosaic of images of a large 
field of view (FOV) scene, or a set of images of the same 
scene taken at different distances from it, which we refer to 
as a stack. The volume of data taken by the MI can therefore 
accumulate rapidly, challenging both the available 
communications bandwidth for downlink, and the amount of 
time scientists on the ground have to understand what the 
rovers are seeing in time to make planning decisions for the 
next day. We developed the Ames MI Toolkit at NASA 
Ames Research Center to help scientists understand the 
images taken by the MI, and to help planners make 
decisions about how many images should be taken, and the 
amount of lossy image compression that should be applied 
to ensure maximum useful information return. 

The Ames MI Toolkit is a set of image processing tools for 
combining and organizing multiple images into coherent 
and easily understood models. The toolkit provides image 
registration and focal section merging for combining a stack 
of images taken at different target distances into a single, 
globally in-focus image. It also provides tools for 3-D 
reconstruction of a surface, using stereo. The toolkit does 
not provide 2-D mosaicking or colorization of images; 
USGS and Cornel1 worked on these capabilities. 

We will discuss the 2-D and 3-D uses of the MI Toollut in 
turn, including the relationship between the components of 
the toolkit and the state of the art in computer vision. We 
will follow with a discussion of how the toolkit was put to 
use during the mission. 

2. 2-D IMAGE PROCESSING 

The Ames MI Toolkit automatically performs image 
registration and focal section merging, the combining 
several images of a surface into a single maximally in-focus 
image. The toolkit also can analyze images to find shadows 
and attempt to adjust the image to appear as if the shadow is 
removed. 

Image Registration 

Focal section merging requires that we first find 
corresponding pixels in a stack of MI images. For the best 
focal section merging, we want a dense, subpixel estimate 
for correspondences, which can be expensive to compute 
when image motion is large and there are no a priori 
epipolar constraints. In order to facilitate the search for 
these correspondences, we first register the images up to a 
homography. If the scene is relatively planar, this 
homography accounts for most of the image plane motion of 
scene points, and the job of the pixel by pixel 
correspondence search is made much simpler. 

The image registration uses a nonlinear optimization method 
to recover the 8 parameters describing the homography. 
The homography H describes the relationship between pixel 
coordinates in images Il and Iz as 

I ,  ( x )  = I ,  (x’) = I ,  (Hx) 

where x and X’ are projective coordinates in 2D, and the 
equality is up to a scale factor. The matrix H describing the 
homography has the form 

We choose the lower right entry to be unity because the 
homography is only defined up to a scale factor, and search 
for the other 8 parameters. In addition, the two images may 
have slightly different exposures, which we account for 
using a linear function of the pixel values, and each pixel 
will contain some random noise, so that equation (1) 
becomes 

(3) 

For convenience, the 8 parameters of the homography and 
the linear coefficients a and p can be collected into the 
parameter vector O=(a,b,c,d,e,f@). We now define a least 
squares cost function over 8, 

(4) 

Workmg with full resolution images presents two problems. 
First, the cost function in (4) may have lots of local minima 
which can trap the minimization. Second, the derivatives 
and cost function can take a long time to compute. For both 
of these reasons, we use a coarse-to-fine approach based on 
image pyramids. 

The image pyramid is constructed for both Il and ZZ up to 
level 3, or subsampling to 2-3 the original image dimensions. 
These subsampled images are aligned only up to rotation 
and scale, i.e. 

The level 3 registration starts with H3 initialized to the 
identity matrix. Once the level 3 registration converges, the 
level 2 images are registered, again up to rotation and scale. 
In order to initialize the search at level 2, we start with the 
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Figure 1 Example MI image sequence with the camera rotating and moving away from a rock surface. Images on left 
are original images. Images on right are the corresponding image registration results. Note that the images from closer 
to the surface have missing data when aligned with the image from farther out, shown here as black borders. Original 
images courtesy of Cornel1 University 

rotation angle recovered at level 3 and multiply the followed at level 1, and the final registration is a search for 
translation parameters by 2 to account for the difference in the full homography at level 0 (full resolution), initialized 
scale at the next pyramid level. The same procedure is by HI. 
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Figure 1 shows an example image sequence using an 
engineering model of the MER MI taken at Cornel1 
University, as well as the result of the registration. 

successive iteration, we use the parallax estimation from the 
previous iteration to warp image A into image A’,  and then 
perform a correlation between A’ and B. This correlation 

Dense Correspondcnce 

A stack of images registered using homography is a useful 
product. Among other things it allows scientists to browse a 
registered stack, scrolling from near to far focus, without the 
distraction of large image motions. However, homography 
does not correct for parallax due to camera motion relative 
to a non-planar surface. 

Although parallax is typically associated with lateral camera 
motion, it is also present for motion along the camera 
pointing direction, increasing towards the edges of the 
image. Parallax motions of several pixels are commonly 
observed between successive MI images, while even a 
fractional pixel is enough to cause artifacts when 
performing the focal section merge. 

We initially used a simple window correlation search to find 
correspondences between images. For a given pixel in the 
first image, a pixel is chosen in the second image 
minimizing the sum square of differences of corresponding 
pixels in a window around each pixel. 

Correcting each image in a stack in this way, we created a 
set of images we hoped would exhibit no relative motion 
when viewed sequentially, only changes in focus. 
Disappointingly, this wasn’t the case. Small motions (less 
than a pixel) were apparent when animating between 
images, and this miscorrelation caused features to grow or 
shrink in the resulting focal section merge. 

We first modified the window correlation search to calculate 
a subpixel match location by modeling the neighborhood of 
the optimal match as a quadratic basin and finding its 
minimum. This improved the results, but unfortunately 
small motions persisted in areas of the image around large 
depth relief. 

The continued problem turned out to be the parallax itself; 
different portions of the support window around a pixel 
were moving by different amounts. Depending on the 
texture of the scene, the area very close to the pixel might 
dominate the match solution, or an area towards the edge of 
the window, which moved differently. Minimizing the 
support window size reduced this effect at the cost of 
spurious incorrect solutions and noise in the quadratic 
subpixel solution. 

To solve our problem, we developed a new technique for 
maintaining support window size while removing the 
problem of parallax. We used an iterative approach to 
solving the correspondences. For the first iteration, a 
complete correlation search is performed between the two 
images, which will be called A and B. This correlation 
provides our initial estimate for parallax motion. For each 

Figure 2 Two original images and the 
magnitude of the parallax correction applied 
(black=O pixels, white=23 pixels) 
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motion. 

As the iterations continue, A ’  approaches B in appearance, 
and as it does, the error in correlation minimum due to 
parallax reduces. The resulting so!ution prodwes images 
without perceptible subpixel motion, allowing us to generate 
focal section merges without perceptible feature size 
changes. Figure 2 shows the magnitude of the parallax 
correction at each pixel after homography. 

Shadow Correction 

Due to operational constraints and time constraints on some 
science objectives, the MER MI is occasionally used in 
situations where the science target is shadowed by the rover 
or the instrument itself. This can present a problem for 
image registration and sharpness value computation since 
the same scene region might be imaged in direct 
illumination in one image and in cast shadow in subsequent 
images. The robust estimator used in image registration 
reduces the effect on alignment but this only partially 
addresses the issue for creating a single complete best view. 
In order to reduce the effect of shadows, we developed a 
shadow estimation and removal tool. 

We begin by assuming that each pixel in the image is either 
directly illuminated or in shadow, so the estimation of 
shadow/illuminated regions is a binary labeling problem as 
in [6]. Furthermore, we assume that each region is 
characterized by a statistical distribution of pixel intensity 
values which can be reasonably represented using a 
Gaussian distribution. The particular model does not need to 
match well, just well enough to aid in the binary labeling 
problem. Lastly we assume that regions are smooth, that is 
we assume an a priori probability that neighboring pixels 
share labels, implying that neighboring pixels tend to be 
simuitaneousiy in shadow or in illumination. 

Combining the a priori smoothness with the label likelihood 
leads to the posterior distribution over labels. 

i ij 

where the first product is the likelihood of label f for the 
observed pixel intensity, and the second product is the 
probability that two neighboring pixels share the same label. 
Maximizing (5)  is the same as minimizing the negative log, 
so we take the log to turn the product into a sum and to turn 
the exponential into a simple energy function with quadratic 
and constant terms, yielding 

Equation (7) can be solved in closed form since the labeling 
f is binary [6][2]. 

The shadow correction requires three steps. The first step is 
to recover the distributions of pixel intensities in 
illumination and in shadow. We compute the histogram of 
image pixel intensities. This histogram is fit to a mixture 
model using EM to recover the mean and variance of the 
two Gaussians [l]. Figure 3 shows an example histogram 
and the recovered mixture model with shadowed regions 
modeled with the normal distribution given by 
N(80.19,18.53) and illuminated regions modeled with 
N(I57.28,20.04). Note that in this example the mixture 
model fits the image histogram well, but in practice the 
mixture model only needs to match well enough to aid in 
the binary label problem. 

The second step is to solve equation (6) for the labeling. 
The values of E&,,@ and + EsWa@ are computed and used 
to construct a network flow problem whose solution is the 
labeling that minimizes (6). Our implementation uses 
Boykov’s public domain network flow solver [2]. 

Figure 4 shows an example MI image with cast shadows. 
The histogram of pixel values and mixture model recovered 
by EM are shown in Figure 3. A maximum likelihood 
labeling (ignoring the smoothness heuristic) is shown in 
Figure 5 ,  where many mislabeled pixels appear as isolated 
points for which the wrong label has higher likelihood than 
the correct label. Figure 6 shows the result of applying the 
graph cut to minimize (6). Finally, Figure 7 shows the 
result of applying a linear photometric correction to each 
pixel labeled as shadowed. 

Our shadow labelling and compensation method uses a 
simplistic model of image formation in the presence of cast 
shadows, and the result leads to strong artifacts on shadow 
boundaries, as seen in Figure 7. In reality, the pixels near 
the edge of the shadowed region are not as strongly affected 
by the object casting the shadow, and the compensation 
should be less. This is an area for future work. 

with 
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Figure 3 Pixel histogram for image in Figure 4 
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Figure 6 Maximum a posteriori labeling usinggraph cut. 
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Focal Section Merging 

The original motivation for the development of the MI 
toolkit is the problem of focal section merging, which is 
necessary because of the limited depth-of-field of the MI'S 
optics. While focus is a good cue for relative depth for 
humans as they flip back and forth between images in a 
vertical sequence, it is also useful to be able to examine a 
single, globally in-focus image of a non-planar scene. 

After a stack is captured by the MI and a dense 
correspondence is found, images are transformed using the 
dense correspondence to create a new stack of images, 
where each pixel x,y on one image corresponds directly to 
the same pixel x,y on all other images. Next, these 
transformed images are combined into a single, in-focus 
image, called the focal section merge. 
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A simple approach to combining the images would be to 
compute each pixel in the focal section merge by selecting 
the pixel with sharpest focus from that location in the stack 
of images transformed to remove motion. Unfortunately, 
the transformed images have um!ergorx interpo!ation from 
the original images, destroying some of the focus 
information. Our approach is, for each pixel in the 
transformed image, to use the inverse of the dense 
correspondence map, and use the corresponding location in 
the original image to compute sharpness.. 

Sharpness of focus s(x,y), is calculated from local variation 
in image intensity ix,+ 

rcrc3n2 

y 'y-32  

0 2  = 3  

After these sharpness values are computed, the focal section 
merge is constructed using the pixel from each location with 
the highest sharpness value. Figures X.a and X.b show the 
results of this technique for a stack (two stacks) of images 
from MER. Figure 8 shows a stack of two images, followed 

by the focal section merge. 

3. 3-D IMAGE PROCESSING 

Suildlng 3-0 models usi.ig stereo 

Often the IDD arm was moved laterally to the camera 
pointing direction, offering views of a rock surface with 
sufficient parallax for recovering depth from stereo. The MI 
camera was very well calibrated before launch, but this 
calibration only applies to intrinsic camera parameters and 
the relationship between the camera coordinate frame and 
the IDD arm. Unlike the calibrated stereo camera pairs on 
the rovers, MI image pairs do not have exact calibrated 
extrinsic relationships. The IDD arm estimates the camera 
location to within about 1 111111, and this was often enough to 
recover epipolar geometry, then use the Ames Stereo 
Pipeline[citation] to perform dense subpixel stereo matching 
and 3D model creation. Figure 9 and Figure 10 show two 
MI images, and Figure 11 shows two views of the mesh 
constructed from stereo. 

Figure 8 Left and middle images are original images from stack. Note that the upper circled area is out-of-focus on 
the left image, and the lower is out of focus on the right image. The right image is the focal-section merge, in which 
both areas are in-focus. 
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Figure 9 Left image of MI stereo pair of surface grinded by 
RAT. Notice the “blueberry” in the lower right quadrant of 

the image 

Figure 11 Two views of the three-dimensional model. 
Notice that the sliced berry in the foreground protrudes out 
from the surface. This protrusion is believed to have caused 
a RAT motor stall. 

Figure 10 Right stereo image. The berry is at the lower left 
edge of the image. 

As the IDD moves to take the second image of a stereo pair, 
part of the first image moves out of the field of view. The 
resulting 3-D models include only the overlap between the 
first and second image. Typically during the mission image 
baseline was half the image size with no “toe-in”, producing 
a model roughly 15.5 mm by 31 mm. 

Building 3 - 0  mosaics 

Once a 3-D model is built, it can be viewed and manipulated 
using a tool such as Viz [9 ] .  However, sometimes the MI 
stereo models are too small to cover an area of interest. 
Stereo pairs can be taken in a mosaic pattern, so that a high 
resolution 3-D reconstruction of a reasonably large surface 
can be built. 

While the motion of the IDD is well known enough to 
provide constraints on the correspondence search for stereo, 
it is typically not well-known enough to automatically 
regrster multiple 3-D MI models to each other. The IDD’s 
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motion is controllable to a minimum of 2-clmm RMS along 
the normal vector to the surface being imaged. An error of 
lmm in the expected location of the camera could 
correspond to an error of 4.2mm in depth, assuming a 15mm 
baseline and approximately 63mm to the object being 
imaged. The error would be systematic across a single 
image pair, and the effect would not be noticed, but several 
different errors in depth would cause multiple 3-D models to 
not line up properly. The MI Toolkit incorporates mesh 
registration techniques developed at Ames [3] to 
compensate for these errors, though these techniques apply 
less effectively when the overlap between 3-D models is not 
large. Since the downlink bandwidth is limited, the overlap 
between successive 3-D models is usually insufficient for a 
fully automatic registration, and hand tuning is required. 
Figure 12 shows several MI meshes generated from a stereo 
mosaic of the surface of “last chance” registered to each 
other, and Figure 13 shows a similar stereo mosaic of the 
“dells” region. 

Because the internal camera parameters are so well known 
for all of the imagers on board, 3-D registration is also 
possible between MI models and models taken with other 
camera pairs, particularly the pancams. Again, because of 
possible errors in IDD position estimation, translation and 
scale typically have to be hand-tuned to match the pancam 
or navcam mesh. Figure 14 is an example of an MI mesh of 
a RAT target embedded into a 3-D pancam model. 

Figure 12 Three views of a MI stereo mosaic of the “last 
chance” rock. This is a view of ten individual stereo meshes, 
registered into a single model. 
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Figure 14 . The red region is a false-color pancam mesh; 
the gray region is the MI mesh 

Figure 15 
difference in resolutions of the pancam and the MI. 

Close up of the previous figure. Note the 

Figure 13 Three views of a MI stereo mosaic of the “dells” 
region. This composite model is a registration of four MI 
stereo meshes. 
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Embedding 2 - 0  into 3-0 

When stereo pairs are not available for reconstructing 3-D 
models directly from MI images, the MI Toolkit can be used 
to embed MI images into 3-D models created using other 
cameras. While this does not provide scientists with the 
highest resolution possible in 3-D, it does provide a high 
resolution 2-D texture map for a lower-resolution 3-D 
model. This is particularly helpful for understanding the 
broader context in which the MI images were taken. 

The locations of the pancams and navcams are well-known 
relative to the rover, allowing us to create a 3-D mesh using 
a stereo pair that is referenced to the rover’s coordinate 
frame. Similarly, using the IDD kinematic model, the 
locations of the MI are approximately known at the time the 
MI images to be embedded are taken. For each MI image to 
be embedded, we copy the pancam or navcam mesh. Then, 
for each point in the original mesh, we use the MI camera 
model for each of the MI locations, projecting the point into 
the image plane of the MI. The first location that “sees” the 
point (the point projects to a pixel location that lies between 
0 and 1024 on each axis) is then assigned that point, and it is 
removed from the other meshes. Finally, a texture map is 
built for each mesh using the pixels from the images that are 
seen by each camera. Figure 16 shows one result of this 
technique. 

4. MICROSOPIC IMAGE BROWSER 

The primary access of the science team to the MI toolkit 
data was via the Ames IMI Browser. The Ames MI Browser 
is a web based image data base displayer which allows easy 
access to the image and image format desired. The user 
chooses the rover and then the sol and image stack of 
interest as shown in Figure 17. 

Once the rover, sol and stack are chosen then the user is 
presented with four choices: the stack of original images, 
the stack of registered images, a stack of registered images 
with disparity removed and a single image which merges the 
best focused elements from all images in the stack. See 
Figure 18. 

Any of these stacks of images are resented on a single web 
page with the image displayed being dynamically displayed 
by moving the cursor over any of the magnifying glasses on 
the right (see Figure 19.) 

This allowed quick, easy access to the wealth of MI image 
data and was well suited to the needs of the science team. 

Figure 16 Three views of the “last chance” MI mosaic. The 
3-D structure of this model, as well as the low-resolution 

texture map, are generated from pancam imagery; the high- 
resolution MI images are “draped” into the model. 
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Figure 17 Initial interface for the Ames MIBrowser with choices of rover, sol and image stack 

Uluoscopic Image Browser 

n 

View onginal data View perspeche regislralion V)ew oollrnized regismlion View local % d o n  merge 

Figure 18 Stack of original images, the stack of registered images, a stack of registered images with disparity removed and a 
single image which merges the best focused elements from all images in the stack 
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Microscopic Image Browser 

Figure 19 User can quickly scroll through images in stack 

easy access to the raw and processed MI images. 

5. TOOLKIT USAGE DURING THE MER MISSION 

The MER MI camera has repeatedly proved invaluable in 
the MER team’s interpretation of Mars and the MI images 
were often little short of astonishing [8]. The textures and 
morphology at MI scales were unpredicted from the next 
best resolution images from the PanCam imager. From the 
perspective of the science team five issues are addressed by 
the Ames MI Toolkit: 

the rotation, scaling and alignment of stacks of MI 
images 

the 3D topography at MI scales 

mitigation of shadow effects, and 

the creation of a maximally focused single image 
from a stack of images with different in-focus and 
out-of-focus regions 
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After images are taken on a MER rover then they are 
downlinked to Earth either the following day or up to 
hundreds of days later. Images arrive one or more times 
during a day. Roughly once per day any new incoming MI 
images are sorted into stacks and within each stack they are 
registered, disparity is removed and the merging of focal 
regions. Then these images become part of the MI 
Browser’s data base and then are available for evaluation by 
the science team. These images have been revisited over the 
entire mission and the tools of the Ames MI toolkit make 
this easier. 

While we and our software were up to the tasks we expected 
from the mission, we found that we spent the majority of 
our time there trying to accommodate requests that were just 
outside the initial scope of the Toolkit, inevitably in 
situations where timeliness was extremely important. The 
versatility of the Toolkit and some rapid last-minute coding 
enabled us to provide timely data products for scientists to 
analyze. 
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